
Finding and evaluating the hierarchical structure in complex networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 5013

(http://iopscience.iop.org/1751-8121/40/19/006)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 5013–5023 doi:10.1088/1751-8113/40/19/006

Finding and evaluating the hierarchical structure in
complex networks

Fei Chen, Zengqiang Chen, Zhongxin Liu, Linying Xiang and
Zhuzhi Yuan

Department of Automation, Nankai University, Tianjin 300071, People’s Republic of China

E-mail: chernf@gmail.com

Received 28 December 2006, in final form 27 March 2007
Published 24 April 2007
Online at stacks.iop.org/JPhysA/40/5013

Abstract
A number of recent studies have focused on a statistical property of
networked systems—the hierarchical structure. The problem of detecting and
characterizing the hierarchical structure has recently attracted considerable
attention. In this paper, it is rewritten as optimization in terms of the
eigenvalues and eigenvectors. Based on that, an algorithm for reconstructing
the hierarchical structure of complex networks is proposed. It is tested on some
real-world graphs and is found to offer high sensitivity and reliability.

PACS numbers: 89.75.Hc, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of networked systems has a history stretching back several centuries, but it has
experienced a particular surge of interest in the last decade, partly as a result of the increasing
availability of large-scale accurate data describing the topology of networks in the real world
[1–6]. There are quite a wide variety of complex systems, described by networks, i.e. the
metabolic network [7], the Internet [8, 9], the World-Wide Web [10], etc [11, 12]. The last few
years have witnessed a tremendous activity devoted to the characterization and understanding
of networked systems.

The hierarchical structure is a common feature of many networked systems and has
received a considerable amount of attention in recent years. For instance, in a social network,
each person may have different ‘importance’, or we say centrality, in the network. Different
hierarchies may correspond to different clusters of people, in which people with approximately
the same centrality lie on the same hierarchy. If such a hierarchical structure is found, it can
be used for many purposes, i.e. control of rumour, virus spreading, etc. Moreover, it is
shown that the hierarchical structure is related to some significant characteristics of complex
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systems, such as the high clustering coefficient and scale-free degree distribution [7]. In
[13], a one-dimensional model for diffusion on a hierarchical tree structure was proposed.
It was shown numerically that this model exhibited ageing phenomena and was originated
from the hierarchical structure of phase space. In [14], Variano et al reported the emergence
of modularity and hierarchical organization in evolved networks supporting asymptotically
stable linear dynamics. Numerical experiments demonstrated that linear stability benefited
from the presence of a hierarchy of modules and that this architecture improved the robustness
of network stability to random perturbations in network structure. In [15], Gallos extended
the model of Bonabeau et al in the case of scale-free networks and analysed the appearance of
hierarchies associated with the scaling exponent. In general, the hierarchical structure gives us
many insights to both the structure and the function of complex networked systems [7, 14–17].
Thus, reconstructing the hierarchical structure from a given network is a non-trivial task.

Our work in the present paper is by no means the first to reconstruct the hierarchical
structure from networks. In [18], Yang et al proposed an approach based on eigenvector
centrality to reconstruct the hierarchical structure from a complex network. However, their
approach encountered some drawbacks: The two parameters ECcrit and Dc

left should be
prescribed, which, due to the insufficiency of knowledge, cannot be prescribed in advance.

In the present paper, we rewrite this problem as the task of optimization in terms of the
eigenvalues and eigenvectors. Then a method based on spectral partitioning is presented to
reconstruct the hierarchical structure from a complex network. This method is different from
the one introduced in [18] and overcomes the drawbacks it raises. In section 2, we give the
description of some criterion to evaluate the centrality of a node. Section 3 gives our algorithm
for reconstructing the hierarchical structure from a complex network. Moreover, in section 4
we feed two real-world networks to our algorithm and show the validity of the present method.
Finally, section 5 summarizes the main conclusion.

2. What is a node’s centrality?

Before giving the hierarchical structure of a complex network, the first issue we should
draw is to measure the centrality of each node. Depending on the context of networks, various
measures of centrality are proposed. Among those four are commonly used: degree, closeness,
betweenness [19] and eigenvector centrality [20, 21].

• Degree centrality of a node i is defined to be

di =
∑

j

aij , (1)

where aij = 1 if there is an edge from node i to j , otherwise aij = 0. In an
acquaintance network, if the popularity is being accessed, then the degree centrality
would be appropriate for this purpose.

• Closeness centrality of a node i is defined to be

ci =
∑

j

dij , (2)

where dij is the length of the path from node i to j . Closeness is an inverse measure
of centrality in that a larger value indicates a less central position, while a smaller value
indicates a more central one. In the context of network diffusion, closeness can be
interpreted as an index of the expected time until arrival at a given node of whatever is
flowing through the network.
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• Betweenness centrality [22] of a node i is defined as:

bi =
∑
jk

gjik

gjk

, (3)

where gjik is the number of paths that pass through node i from node j to node k and gjk

is the number of paths from node j to node k. It measures the centrality of nodes when
the information diffuses along the shortest path in the network.

• Eigenvector centrality is best described by the following equation:

λe(i) =
∑

j

aij e(j). (4)

In the matrix form, it is written as

λx = Ax. (5)

This type of equation is well solved as the eigenvalues and eigenvectors of the adjacency
matrix A.

Eigenvector centrality is based on the simple fact that a node’s centrality is determined
by the centrality of the nodes that is incident to that node. As A is the adjacency matrix of
a network, A is non-negative and due to the theorem of Perron–Frobenius, there exists an
eigenvector of the maximal eigenvalue, called principal eigenvector, with only non-negative
entries. Due to the physical meaning of the eigenvector, only the principal eigenvector
is suitable for being the centrality measure. Moreover, since each eigenvalue has many
corresponding eigenvectors and they are all parallel, we use |eprincipal| as our measure for the
eigenvector centrality, with eprincipal the principal eigenvector of A.

In [21], Ruhnau proposed a criterion for evaluating the measure of centrality called node
centrality. It was defined as follows.

Definition 1 (node centrality). Let G = (V ,E) be an undirected and connected graph with
|V | = n. Let nc be a function which assigns a real value to every node of G. nc(vi) is called
a node centrality of node vi if

(I) nc(vi) ∈ [0, 1] for every vi ∈ V ,
(II) nc(vi) = 1 if and only if G = S1,n−1 and i = 1,

where S1,n−1 denotes the star-shaped networks with the centre v1.

It was drawn from [21] that the betweenness centrality and eigenvector centrality are
node centrality, while the other two are not. Hence, in this paper, we would focus mainly
on eigenvector centrality and betweenness centrality as the measure to a node’s centrality.
However, the algorithm presented in this paper is not constrained by the definite measure
being used. Hence, we can use a proper centrality measure according to the application
requests which are well established.

3. Finding the hierarchical structure from a network

In this section, we propose the algorithm based on spectral partitioning for reconstructing the
hierarchical structure from a network. There is a large literature within computer science
on spectral partitioning, in which network properties are linked to the spectrum of the graph
Laplacian matrix [27–29]. Despite its evident success in the graph partitioning arena, spectral
partitioning is a poor approach for detecting the hierarchical structure in real-world networks,
which is the primary topic of this paper. The condition for graph partitioning method to



5016 F Chen et al

be valid is that the sizes of the groups into which the networks are divided should be fixed.
However, in most cases, we do not know the sizes in advance. We would like to let the sizes
of hierarchies be free and in this case try to make the best division. But the graph partitioning
method will break down in this case. How to solve this problem? This is the main issue of
this section.

First we should consider the simplest case that dividing the network into two hierarchies.
We begin by defining the eigenvector centrality matrix, EC, to be the matrix with elements:

ECij = |EC(i) − EC(j)|, (6)

with EC(i) the centrality of node i depending on the centrality measure used. It is obvious
that the matrix EC is symmetric.

Therefore, we get the following criterion:

D = 1

2

∑
i,j

(ECij − Avgij )(1 − δ(h(i), h(j))), (7)

where h(i) denotes the hierarchy to which node i belongs and

δ(i, j) =
{

1 i = j

0 otherwise.
(8)

The factor 1
2 compensates for our calculation of each node pair twice.

The physical meaning of Avgij is the expectation of the difference of centrality of nodes
i and j . It is defined as follows:

Avgij =




1

n(n − 1)

∑
i,j

ECij i �= j

0 i = j.

(9)

The expectation of the difference of centrality between node i and node j is the expectation
of the difference of centrality in the whole network. Since nodes i and j do not tell us
anything valuable to the expectation of the difference of centrality between them, equation (9)
is reasonable. Moreover, we note that the expectation is dependent on the particular network,
being consistent with our intuition that different networks have different expectations of the
difference of centrality.

In the following, we define the index vector s = [s1, s2, . . . , sn]T :

si =
{

+1 if node i belongs to hierarchy 1
−1 if node i belongs to hierarchy 2.

(10)

Note that s satisfies the normalization condition

sT s = n. (11)

Then
1

2
(1 − sisj ) =

{
0 if i and j belong to the same hierarchy
1 otherwise.

(12)

Thus, equation (7) could be rewritten as

D = 1

4

∑
i,j

(ECij − Avgij )(1 − sisj ). (13)

Since ∑
i,j

(ECij − Avgij ) = 0, (14)
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we rewrite equation (13) as

D = 1

4

∑
i,j

(Avgij − ECij )sisj . (15)

In the following, we define the matrix B to be

Bij = Avgij − ECij . (16)

It is obvious that the matrix B is also symmetric. So equation (15) could be rewritten in the
matrix form

D = 1
4 sT Bs. (17)

Lemma 1 (SymMtrx). Let A be a real symmetric matrix, then the following properties hold.

(1) All eigenvalues of A are real.
(2) We can take each eigenvector to have only real entries.
(3) If u and v are eigenvectors of A associated with different eigenvalues, then u and v are

orthogonal.
(4) One can always construct eigenvectors v1, v2, . . . , vn that are orthogonal and of unit

norm

vT
i vj =

{
0 i �= j

1 i = j.
(18)

Since B is a real symmetric matrix, according to Lemma 1, all eigenvalues of B are real.
Moreover, it has a set of normalized orthogonal eigenvectors, denoted by vi . We let
λ1, λ2, . . . , λn be the corresponding eigenvalues. Without loss of generality, assume that
λ1 � λ2 � · · · � λn. Therefore, we may write s as the linear combination of vi :

s =
n∑

i=1

aivi . (19)

Written in a matrix form s = V a, where a = [a1, a2, . . . , an]T and V = [v1, v2, . . . , vn].
Thus,

a = V −1s = V T s. (20)

Then,

ai = vT
i s. (21)

Since sT s = n and
∑n

i=1 a2
i = n, we have

D = 1

4

∑
i

aiv
T
i B

∑
j

aj vj (22)

and

D = 1

4

∑
i,j

aiaj v
T
i Bvj . (23)

Since Bvj = λjvj ,

D = 1

4

∑
i,j

aiaj v
T
i λjvj . (24)
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Moreover,

vT
i vj =

{
0 i �= j

1 otherwise.
(25)

Hence, equation (24) can be rewritten as

D = 1

4

n∑
i=1

a2
i λi . (26)

Therefore, the issue of maximizing D is equal to the task of choosing the proper ai such that
the weight put on the term corresponding to the largest eigenvalue in equation (26) is as much
as possible.

If there is no constraint of s, we would choose s proportional to the eigenvector
corresponding to the largest eigenvalue. However, the world is not perfect. As described
before, s could only be 1 or −1, which means that, in most cases, s could not be chosen
proportional to v1. However, a good approximate solution exists by choosing s to be as close
to parallel with v1 as possible, which is achieved by setting

si =
{

1 if v1i � 0
−1 otherwise,

(27)

where v1i is the ith element of the vector v1.
Here comes the algorithm for dividing the networks into two hierarchies:

Algorithm 1.

(1) Compute each node’s centrality according to the specific measure proposed in section 2.
(2) Using the centralities, create the matrix B, described in section 3.
(3) Compute the eigenvalues and eigenvectors of B, then choose s according to equation (27).
(4) If the division contains one empty group, return ‘false’, otherwise ‘true’.

To the end, we have dealt with the simplest case of dividing the networks into two
hierarchies. When extending to the case of more than two hierarchies, at first sight, we may
first call algorithm 1 to divide the networks into two hierarchies and then feed each hierarchy
to algorithm 1 again and so forth. However, this method does not work very well. The
fundamental problem is that we should divide the subgraph according to the centrality of
nodes in the whole network, not in the subgraph. Therefore, when applying algorithm 1 to
the subgraph, we use the centrality vector of nodes, EC(i), in the original graph but not in the
subgraph. In practice, the method is much better than the former one.

The present method has several advantages which are as follows.

(1) It does not depend on the definite node centrality.
(2) It does not give any constraint of the graph itself. Any kinds of graphs, such as directed

graph and weighted graph, can use our algorithm.

The above features of the present method make it a good choice in practical application.

4. Simulations

In this section, we present a number of tests of our algorithm on real-world networks. In each
case, we find that our algorithm reliably detects the hierarchical structure.

The first example is drawn from a network describing the football player market. Figure 1
describes the 22 soccer teams participating in the World Championship in Paris, 1998 [30].
Players of the national team often have contracts in other countries. This constitutes a player
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Figure 1. The network example describes the 22 soccer teams which participated in the World
Championship in Paris, 1998. If there is one arc from node i to node j , it means that there are
players exported from country i to country j . The thickness of line represents the number of
players.

market where national teams export players to other countries. Members of the 22 teams
had contracts in altogether 35 countries. Counting which team exports how many players to
which country can be described with a valued and asymmetric graph. The graph is highly
asymmetric: some countries only export players, while some countries are only importers.
Figure 2 illustrates the adjacency matrix of the example describing the 22 soccer teams,
participating in the World Championship in Paris, 1998.

At first, we use the betweenness centrality as our measure for centrality. The result,
described by figure 3, is as follows.

First, we focus our attention on the first division generated by our algorithm. The first
division is denoted as R1 and R2. The set of R1 contains only five entries DEU, ITA, ESP, FRA,
GBR which represents the countries Germany, Italy, Spain, France, England, respectively. The
division sounds reasonable since all the five countries have the top football leagues: Germany
Bundesliga, Italy Seria A, Spain Primera divisioń de Liga, France Le Chanpionnat and England
Premiership. More interesting, it is worth noting that Italy, Germany and France took part in
the semi-final of the World Cup 2006 and Italy and France were the two teams appearing in
the final. Even England and Spain attended the quarterfinal. It seems that the hierarchical
structure of the football players’ market can be treated partly as a representative of football
levels in countries.

Now let us turn to other divisions. R2111 = (BGR, CHL, CMR, COL, DNK, HRV, IRN,
JAM, KOR, MAR, NGA, NOR, PRY, ROM, YUG). We are interested in this set since most of
the Afro-Asian countries are in it. The main reason for this division is that the football levels
in these countries are relatively lower compared with the other countries which participated
in the World Cup 1998 as a whole. Among them, Japan is the only exception. Due to the
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Figure 2. The adjacency matrix of network example describing the 22 soccer teams which
participated in the World Championship in Paris, 1998.

Figure 3. The hierarchical structure of network described in figure 1. Each division is described
by a layer of the tree.
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Figure 4. The network from Zacharys karate club study as described in the text. The nodes
associated with the club administrator’s faction are drawn in green and those associated with the
instructor’s faction are drawn in yellow.

financial support and good policies, Japan football has improved a lot recently. And the high
reward has attracted many famous players to take part in the J-league, Japanese top football
league. Hence, Japan plays a much more central role in the football players’ market than any
other Afro-Asian countries, leading Japan to appear in the set R221 = (AUT, JPN, PRT, TUR)
with some football-developed countries such as Portugal and Turkey.

When mentioning football, the world champion Brazil should not be omitted. In our
divisions, Brazil appears in the set R222 = (BRA, NLD, USA). It is not surprising that Brazil
does not appear in the set R1 because Brazilian football league is not that attractive compared
to the five famous European leagues listed above. Most of the excellent players in Brazil join
the teams of these leagues instead of native clubs. The examples are Ronaldo working for
Real Marid in Spain, Kaka for AC Milan in Italy and so forth. Thus, Brazil does not gain
much centrality in the football market. However, anybody admits that they are in the centre
of the football world even when they failed to get the championship of World Cup 2006 in
Germany.

However, when using the eigenvector centrality as the measure of centrality, the result
is rather poor. The main reason lies in that the eigenvector centrality is not suitable for
being the measure in this case. The eigenvector centrality of the football player market
network is [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], which says
that Columbia, the ninth entry, is in the centre of the football players’ market. Obviously,
it conflicts with our intuition. The reason for the inefficacy of the eigenvector centrality is
described in [31].

In the following, we illustrate the possibility of using other measures in our algorithm,
other than centrality measures. The example is drawn from the well-known karate club study
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Figure 5. Hierarchical tree calculated by using the algorithm presented in this paper.

of Zachary [32]. In this study, Zachary observed 34 members of a karate club over a period of
2 years. During the course of the study, a disagreement developed between the administrator
of the club and the club’s instructor, which ultimately resulted in the instructor leaving and
starting a new club, taking about a half of the original clubs members with him. Figure 4
shows the network with the instructor and administrator represented by nodes 1 and 34,
respectively. The nodes associated with the club instructor’s faction are drawn in yellow and
those associated with the administrator are drawn in green. In this case, ECij is defined as
follows:

ECij =
{

1 if there is an edge between nodes i and j

0 otherwise.
(28)

Figure 5 shows the result of hierarchy generated by the current algorithm. As indicated by
the first division, our result reveals actual divergence, marked by different colours in figure 4.
Furthermore, when using the eigenvector centrality as the measure, unfortunately it fails to
reveal the actual division. The reason for its failure is similar to the example of the football
player market.

Finally, we should mention that the method presented in this paper is approximate but
not exact. However, as the simulations show, the present method is accurate in reconstructing
the hierarchical structure. Moreover, since the computation complexity lies in the cost of the
calculation of the principal eigenvector of matrices, it is rather fast. Hence, our method is
good for practical application.

5. Conclusions

In this paper, we have investigated the hierarchical structure in various kinds of networks,
by introducing a method for detecting such a structure. We have tested it on two real-world
networks with a well-documented structure and found the results to be in excellent agreement
with expectations. We hope that the method presented here will be useful in real application
in the future.
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